中文字幕欧美一区二区_久久精品国产亚洲77777_91在线?清?看_狠狠干妹子_人妻夜夜爽爽88888视频_97综合网

食品伙伴網(wǎng)服務(wù)號(hào)
 
 
當(dāng)前位置: 首頁 » 專業(yè)英語 » 專業(yè)知識(shí) » 正文

Food Minerals-Copper (Cu)

放大字體  縮小字體 發(fā)布日期:2007-05-05

 

Introduction

Copper is an essential trace element for humans and animals. In the body, copper shifts between the cuprous (Cu1+) and the cupric (Cu2+) forms although the majority of the body's copper is in the Cu2+ form. The ability of copper to easily accept and donate electrons explains its important role in oxidation-reduction (redox) reactions and the scavenging of free radicals. Scientists are still uncovering new information regarding the functions of copper in the human body.

 

Food Sources

Copper is found in a wide variety of foods and is most plentiful in organ meats, shellfish, nuts, and seeds. Wheat bran cereals and whole grain products are also good sources of copper. The concentrations in plant sources may vary from place to place because soil mineral content varies geographically.

Some important food sources of copper:

 

Liver
Oysters
Sardines
Sunflower seeds
Crab

Lobster
Peanuts
Mushrooms
Dried Plums
Almonds

 

Recommended Dietary Allowance (RDA)

The European Union RDA for the general population is set at 1,15 mg/day.

The RDA for copper reflects the results of depletion-repletion studies and is based on the prevention of deficiency.

 

Inhibitors/stimulators:

The following food components have been found to stimulate the absorption of copper:

 

Iron – Adequate copper nutritional status appears to be necessary for normal iron metabolism and red blood cell formation. Anaemia is a clinical sign of copper deficiency, and iron has been found to accumulate in the livers of copper deficient animals, indicating that copper (probably in the form of ceruloplasmin) is required for iron transport to the bone marrow for red blood cell formation.

 

The following food components have been found to inhibit the absorption of copper:

 

Zinc – High supplemental zinc intakes of 50 mg/day or more for extended periods of time may result in copper deficiency. High dietary zinc increases the synthesis of an intestinal cell protein called metallothionein, which binds certain metals and prevents their absorption by trapping them in intestinal cells. Metallothionein has a stronger affinity for copper than zinc, so high levels of metallothionein induced by excess zinc cause a decrease in intestinal copper absorption. High copper intakes have not been found to affect zinc nutritional status.

 

Molybdenum – Molybdenum is an antagonist to copper absorption.

 

Functions in the Body

Copper is a critical functional component of a number of essential enzymes, known as cuproenzymes. Some of the physiological functions known to be copper-dependent are discussed below.

Energy production
The copper-dependent enzyme, cytochrome c oxidase, plays a critical role in cellular energy production. By catalyzing the reduction of molecular oxygen (O2) to water (H2O), cytochrome c oxidase generates an electrical gradient used by the mitochondria to create the vital energy-storing molecule, ATP.

Connective tissue formation
Another cuproenzyme, lysyl oxidase, is required for the cross-linking of collagen and elastin, which are essential for the formation of strong and flexible connective tissue. The action of lysyl oxidase helps to maintain the integrity of connective tissue in the heart and blood vessels and plays a role in bone formation.

Iron metabolism
Two copper-containing enzymes, ceruloplasmin (ferroxidase I) and ferroxidase II have the capacity to oxidize ferrous iron (Fe2+) to ferric iron (Fe3+), the form of iron that can be loaded onto the protein transferrin for transport to the site of red blood cell formation. Although the ferroxidase activity of these two cuproenzymes has not yet been proven to be physiologically significant, the fact that iron mobilization from storage sites is impaired in copper deficiency supports their role in iron metabolism.

Central nervous system
A number of reactions essential to normal function of the brain and nervous system are catalyzed by cuproenzymes.

Neurotransmitter synthesis
Dopamine-b-monooxygenase catalyzes the conversion of dopamine to the neurotransmitter norepinephrine (noradrenalin).

Metabolism of neurotransmitters
Monoamine oxidase (MAO) plays a role in the metabolism of the neurotransmitters norepinephrine, epinephrine (adrenalin), and dopamine. MAO also functions in the degradation of the neurotransmitter serotonin, which is the basis for the use of MAO inhibitors as antidepressants.

Formation and maintenance of myelin
The myelin sheath (cell wall of nerve cells) is made of phospholipids whose synthesis depends on cytochrome c oxidase activity.

Melanin formation
The cuproenzyme tyrosinase, is required for the formation of the pigment melanin. Melanin is formed in cells called melanocytes and plays a role in the pigmentation of the hair, skin, and eyes.

Superoxide dismutase
Superoxide dismutase (SOD) functions as an antioxidant by catalyzing the conversion of superoxide radicals (free radicals or ROS) to hydrogen peroxide, which can subsequently be reduced to water by other antioxidant enzymes. Two forms of SOD contain copper: 1) copper/zinc SOD is found within most cells of the body, including red blood cells, and 2) extracellular SOD is a copper containing enzyme found in high levels in the lungs and low levels in blood plasma.

Ceruloplasmin
The cupper containing protein ceruloplasmin functions as an antioxidant in blood serum .

Regulation of gene expression
Copper-dependent transcription factors regulate transcription of specific genes. Thus, cellular copper levels may affect the synthesis of proteins by enhancing or inhibiting the transcription of specific genes. Genes regulated by copper-dependent transcription factors include genes for copper/zinc superoxide dismutase (Cu/Zn SOD), catalase (another antioxidant enzyme), and proteins related to the cellular storage of copper.

 

Deficiency

Clinically evident copper deficiency is relatively uncommon. Serum copper levels and ceruloplasmin levels may fall to 30% of normal in cases of severe copper deficiency. One of the most common clinical signs of copper deficiency is an anaemia that is unresponsive to iron therapy but corrected by copper supplementation. Copper deficiency may also result in abnormally low numbers of white blood cells known as neutrophils (neutropaenia), a condition that may be accompanied by increased susceptibility to infection. Osteoporosis and other abnormalities of bone development related to copper deficiency are most common in copper-deficient low-birth weight infants and young children.

Cow's milk is relatively low in copper, and cases of copper deficiency have been reported in high-risk infants and children fed only cow's milk formula.

Toxicity

Copper toxicity is rare in the general population. Symptoms of acute copper toxicity include abdominal pain, nausea, vomiting, and diarrhoea, which help to prevent additional ingestion and absorption of copper. More serious signs of acute copper toxicity include severe liver damage, kidney failure, coma, and death. Of more concern from a nutritional standpoint is the possibility of liver damage resulting from long-term exposure to lower doses of copper.

In general, healthy individuals, doses of up to 10,000 µg (10 mg) daily have not resulted in liver damage. It should be noted that individuals with genetic disorders affecting copper metabolism (Wilson's disease, Indian childhood cirrhosis, and idiopathic copper toxicosis) may be at risk of adverse effects of chronic copper toxicity at significantly lower intake levels.

Regulation

Copper can enter the body during drinking or eating substances that contain copper. Copper can also enter the body through breathing air or dust containing copper. Copper may enter the lungs of workers exposed to copper dust or fumes.

Copper rapidly enters the bloodstream and is distributed throughout the body after one eats or drinks it. Certain substances in foods eaten with copper can affect the amount of copper that enters the bloodstream from the gastrointestinal tract. The body is very good at blocking high levels of copper from entering the bloodstream. It's unknown as to how much copper enters the body through the lungs or skin. Copper then leaves the body in faeces and urine, mostly in faeces. It takes several days for copper to leave the body. Generally, the amount of copper in the body remains constant (the amount that enters your body equals the amount that leaves).

更多翻譯詳細(xì)信息請(qǐng)點(diǎn)擊:http://www.trans1.cn
 
[ 網(wǎng)刊訂閱 ]  [ 專業(yè)英語搜索 ]  [ ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關(guān)閉窗口 ] [ 返回頂部 ]
分享:

 

 
推薦圖文
推薦專業(yè)英語
點(diǎn)擊排行
 
 
Processed in 0.076 second(s), 14 queries, Memory 0.93 M
主站蜘蛛池模板: 国产精品国产三级国AV | 99精品一级欧美片免费播放资讯 | 91看大片| 久草日B视频一二三区 | 日本一本一道高清无 | 欧美性猛交久久久乱大交小说 | 扒开粉嫩的小缝隙喷白浆 | 亚洲综合无码久久精品综合 | 亚州成人在线观看 | 成人福利国产精品视频 | 67194中文字幕在线观看日韩 | 国产精品96久久久久久又黄又硬 | 性欧美视频一区二区三区 | 国产精品高清乱码在线观看 | 亚洲视频精品 | 精品久久久久免费极品大片 | 日本一区二区不卡在线 | 欧美视频精品全部免费观看 | 成人AV片无码免费网站 | 成人一区二区三区久久精品嫩草 | yellow视频在线观看免费 | 国产一区二区视频播放 | 成人网在线观看视频 | 日本十八禁视频无遮挡 | 精品久久AⅤ人妻中文字幕 国产高清无码黄片亚洲大尺度视频 | 欧美日韩一区二区精品 | 亚洲国产良家在线观看 | 国产一级一片免费播放 | 久久亚洲美女精品国产精品 | 国内揄拍国内精品少妇国语 | 日本一道高清一区二区三区 | 国产一区二区三区别 | 最新一区二区三区 | 国产精品久久久久久 | 亚洲欧美日韩另类精品一区 | 一区二区三区精品视频免费看 | 国产福利视频网站 | 久久国产九九 | 成人毛片在线 | 色综合视频二区偷拍在线 | 欧美老妇视频热 |